Acid rain mitigation experiment shifts a forested watershed from a net sink to a net source of nitrogen.

نویسندگان

  • Emma J Rosi-Marshall
  • Emily S Bernhardt
  • Donald C Buso
  • Charles T Driscoll
  • Gene E Likens
چکیده

Decades of acid rain have acidified forest soils and freshwaters throughout montane forests of the northeastern United States; the resulting loss of soil base cations is hypothesized to be responsible for limiting rates of forest growth throughout the region. In 1999, an experiment was conducted that reversed the long-term trend of soil base cation depletion and tested the hypothesis that calcium limits forest growth in acidified soils. Researchers added 1,189 kg Ca(2+) ha(-1) as the pelletized mineral wollastonite (CaSiO3) to a 12-ha forested watershed within the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire. Significant increases in the pH and acid-neutralizing capacity of soils and streamwater resulted, and the predicted increase in forest growth occurred. An unanticipated consequence of this acidification mitigation experiment began to emerge a decade later, with marked increases in dissolved inorganic nitrogen (DIN) exports in streamwater from the treated watershed. By 2013, 30-times greater DIN was exported from this base-treated watershed than from adjacent reference watersheds, and DIN exports resulting from this experiment match or exceed earlier reports of inorganic N losses after severe ice-storm damage within the study watershed. The discovery that CaSiO3 enrichment can convert a watershed from a sink to a source of N suggests that numerous potential mechanisms drive watershed N dynamics and provides new insights into the influence of acid deposition mitigation strategies for both carbon cycling and watershed N export.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

&&&Rubrikzuordnung fehlt&&& Airborne carbon deposition on a remote forested lake

Airborne inputs of terrestrial particulate organic carbon (TPOC)weremeasured during summer stratification for an oligotrophic north temperate lake located in a forested watershed. These inputs were episodic and associated with wind and rain events. The rate of deposition decreased exponentially with distance from shore. Yet, about 55% of the total airborne TPOC input occurred more than 12 m fro...

متن کامل

A Sensitivity Analysis of the Impact of Rain on Regional and Global Sea-Air Fluxes of CO2

The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the sea surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas exchange through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the sea skin temp...

متن کامل

بهینه سازی اقتصادی آب آبیاری و کود نیتروژن برای گندم در مقادیر مختلف بارندگی (در منطقه مراغه)

Irrigation water Scarcity is the major limiting factor for crop production in irrigated farming. Therefore, optimal use of water is influenced by seasonal rainfall especially where the water price is high. Nitrogen also plays a key role in plant nutrition. In this study, wheat grain yield production as a function of applied water (irrigation plus seasonal rainfall) and nitrogen fertilizer (appl...

متن کامل

Modeling thecarboncostofplantnitrogenacquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation

Accurate projections of the future land carbon (C) sink by terrestrial biosphere models depend on how nutrient constraints on net primary production are represented. While nutrient limitation is nearly universal, current models do not have a C cost for plant nutrient acquisition. Also missing are symbiotic mycorrhizal fungi, which can consume up to 20% of net primary production and supply up to...

متن کامل

Nitrogen sources to watersheds and estuaries: role of land cover mosaics and losses within watersheds.

Across most of the World's coastal zone there has been a geographic transition from naturally vegetated to human-altered land covers, both agricultural and urban. This transition has increased the nitrogen loads to coastal watersheds, and from watersheds to receiving estuaries. We modeled the nitrogen entering the watershed of Waquoit Bay, Massachusetts, and found that as the transition took pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 27  شماره 

صفحات  -

تاریخ انتشار 2016